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Abstract: A novel method (Sophia) is presented to track oxygen
saturation changes in a controlled environment using an RGB camera
placed approximately 1.5 m away from the subject. The method is evaluated
on five healthy volunteers (Fitzpatrick skin phenotypes II, III, and IV)
whose oxygen saturations were varied between 80% and 100% in a
purpose-built chamber over 40 minutes each. The method carefully selects
regions of interest (ROI) in the camera image by calculating signal-to-noise
ratios for each ROI. This allows it to track changes in oxygen saturation
accurately with respect to a conventional pulse oximeter (median coefficient
of determination, 0.85).
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1. Introduction

Peripheral blood oxygen saturation (SpO2) is a measure of the relative concentration of
oxygenated haemoglobin molecules in the arterial blood with respect to the total amount of
haemoglobin. SpO2 is widely used in clinical practice, for example in the assessment of acutely
ill patients, monitoring during anaesthesia, and in the follow-up of patients with chronic lung
disease [1, 2].

The invasive technique of blood gas analysis remains the clinical gold standard for the
assessment of arterial blood oxygenation and is still widely used in many clinical contexts [1,3],
however it was only with the development of the current standard for SpO2 measurement in the
early 1980s [4] that SpO2 could be measured both continuously and non-invasively. This new
technique, known as pulse oximetry, was a revolution for in-hospital monitoring [5].

Pulse oximetry is based on the technique of photoplethysmography, and takes advantage of
the fact that oxyhaemoglobin (HbO2) and reduced haemoglobin (Hb) absorb light differently
at different wavelengths; that arterial blood is mostly pulsatile in nature; and that an optical
window exists in the far visible and short-wave infrared for water which allows radiation in
this wavelength range to probe the vasculature of the dermis [6]. These three factors underpin
pulse oximetry, in which tissue is illuminated with red and infrared light and the reflected or
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the transmitted light intensity is measured.
Achieving the full potential of conventional pulse oximetry, that is, the ability to determine

both heart rate and oxygen saturation, has been the goal of non-contact imaging PPG (iPPG)
methods since their inception [7]. In fact, although contact SpO2 methods present many
advantages over invasive alternatives, SpO2 probes still need to be worn – generally on fingers
or clipped to earlobes – leading to poor compliance and risks associated with infection and
skin irritation [8]. Despite this, recent work in the field of non-contact imaging using cameras
has concentrated mostly on methods for the determination of heart rate, with little or no effort
dedicated to deriving oxygen saturation [9–12].

The tracking of oxygen saturation with RGB cameras (visible light cameras with three
channels: red, green and blue respectively) presents a number of additional problems compared
to standard pulse oximetry. The near-monochromatic light sources with known intensity
common to all pulse oximeters are replaced by broadband light-sources with unknown
intensity; sensors that are specific to the red and infrared wavelengths of interest and that are
sampled at very high frame rates (> 60 Hz) are replaced with broad-spectrum RGB sensors
that have been developed to emulate the human eye and usually sample at low frame rates
(∼ 30 Hz). Furthermore, the relatively controlled and limited tissue volume over which the
measurement occurs for standard PPG - optically isolated and with a degree of robustness to
motion - is replaced with a region of skin that is subject to movement and other artefacts such
as surface reflections and shadowing. Finally, the use of visible wavelengths means a more
superficial vasculature is probed than with the longer wavelengths of red or infrared.

Several groups have attempted different approaches to the non-contact measurement of
SpO2 with cameras. In [13] a Monte Carlo simulation of light transport was employed in an
attempt to convert the RGB signals obtained into a relative concentration of oxygen saturation,
whereas [7] sought to control the light-source and [14] attempted to control the sensor response
by introducing narrow band-pass filters. Our own preliminary results showed that oxygen
saturation changes could be followed for periods with little or no motion using two of the
RGB channels (red and blue) or by simply using the baseline changes of the colour of the skin
from one of the RGB channels [15, 16], and the same channels were later used by [17].

Nonetheless, the majority of the existing work in this field suffers from the significant
limitation that it has not examined a pathophysiologically/clinically relevant SpO2 range. The
results cannot therefore be securely extrapolated to clinical practice, and over-fitting is a risk.
[13] does not have any reference SpO2; [7] used in vitro blood samples; and [14] did not present
any desaturations occurring below 95%. Finally, in our previous work ( [16]) that showed
the relationship between the derived oxygen saturation and the reference oxygen saturation
over an extended period of time (20 minutes) and for a clinically significant desaturation, the
relationship was found to vary over time. With regards to the methods used to choose the regions
of interest in order to obtain the colour signals that are employed in the estimation of the SpO2,
previous work in this field is either dependent on the use of fixed regions of interest ( [13–16])
or on a colour-based segmentation of the skin [17].

The present work introduces a novel method for Skin-Oxygen Photoplethysmographic Image
Analysis (Sophia), which allows oxygen saturation changes to be tracked accurately over time.
Sophia uses broad-band lighting and an RGB camera, and is tested on subjects whose arterial
oxygen saturation was varied over a clinically significant range (80-100%) with both fast and
slow desaturations. The novelty of the method lies in the selection of the regions of interest,
the use of signal averaging to improve on the analysis of the amplitude of the signal, and the
methods for deriving the variables used in the algorithm.

Although an absolute measure of oxygen saturation is not claimed (this will depend on
factors such as the lighting and the skin colour of the subject), the method is shown to be able to
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track changes in oxygen saturation changes with accuracy comparable to that of a conventional
pulse oximeter, when the algorithms are applied retrospectively to the test data.

2. Method

2.1. Theory

Ignoring all specular reflectance components (we will see this is sufficient later on), light with
a spectral distribution given by L(λ ), incident on a surface with a reflectance function given by
s(λ ), and reaching a sensor c with a response given by the function rc(λ ), will yield a sensor
response that may be expressed as follows:

Rc = ∑
λc

L(λ ,~x, t)s(λ ,~x, t)rc(λ , t) (1)

where the wavelength dependence is given by λ , the time-dependence is given by t, and
the position-dependence is given by the position vector ~x. For incident light that is spectrally
time-invariant, we may expand L(λ ) to:

L(λ , t) = l(~x, t)L̂(λ ) (2)

where l(~x, t) is the intensity of the incident light and L̂(λ ) is the spectral distribution of the
light normalised with respect to the total energy. We may also assume that the sensor response
is constant in time, such that

rc(λ , t) = rc(λ ) (3)

The reflectance function s(λ ,~x, t) will be dependent on the absorbance properties of the
surface on which the light is incident. These will include the influence of the chromophores
in which we are interested, namely oxygenated and deoxygenated haemoglobin, melanin, and
other absorbers and scatterers. In the case of skin perfused by blood, we may divide s(λ ,~x, t)
into its two main components, the contribution of non-blood tissue-light interactions m(λ ,~x),
assumed to be time-invariant, and the function describing the contribution of blood-light
interactions b(λ ,~x, t).

s(λ , t) = m(λ ,~x)b(λ ,~x, t) (4)

The pulsatility of the blood due to the change in the perfusion of the skin tissue imaged may
be modelled further, such that:

b(λ ,~x, t) = v(~x, t)bDC(λ , t)+∆v(~x, t)bAC(λ , t) (5)

where v(~x, t) describes the static, non-pulsatile (DC) blood present in the tissue at all times,
∆v(~x, t) the pulsatile (AC) component, and bDC(λ , t) and bAC(λ , t) are the functions describing
the reflectance of the static and pulsatile components respectively. Note that these are also
time-variant as they will depend on the oxygen saturation in each type of blood.

We may finally write the sensor response as:

Rc(t) = l(~x, t)∑
λc

L̂(λ )rc(λ )m(λ ,~x) [v(~x, t)bDC(λ , t)+∆v(~x, t)bAC(λ , t)] (6)

By normalising the AC component with respect to the DC component, we find that the
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dependence on light intensity is eliminated:

R̂c(t) =
l(~x, t)∑λc L̂(λ )rc(λ )m(λ ,~x)∆v(~x, t)bAC(λ , t)
l(~x, t)∑λc L̂(λ )rc(λ )m(λ ,~x)v(~x, t)bDC(λ , t)

=
∆v(~x, t)
v(~x, t)

∑λc L̂(λ )rc(λ )m(λ ,~x)bAC(λ , t)

∑λc L̂(λ )rc(λ )m(λ ,~x)bDC(λ , t)

(7)

However, the ratio of R̂c(t) is still dependent on the volumes of the static (v) and pulsatile
(∆v) blood. This dependence is eliminated by taking the ratio of two AC components, as v and
∆v are not dependent on wavelength.

S(t) =
R̂1

R̂2

=
∑λ1

L̂(λ )rc(λ )m(λ ,~x)bAC(λ , t)

∑λ1
L̂(λ )rc(λ )m(λ ,~x)bDC(λ , t)

∑λ2
L̂(λ )rc(λ )m(λ ,~x)bDC(λ , t)

∑λ2
L̂(λ )rc(λ )m(λ ,~x)bAC(λ , t)

=
AC1/DC1

AC2/DC2

(8)

The remaining function, the ratio of ratios, now only depends on the properties of the blood
reflectance functions, and will therefore be a function of SpO2.This is the same ratio of ratios
as that used in the original theoretical treatment for pulse oximetry [3]. Equation 8, however,
has been rederived from first principles for the more general context of colour channels using a
number of simplifying assumptions. Under the conditions of the model described, and further
assuming that the properties of the skin we image do not vary spatially in~x such that

m(λ ,~x) = m(λ ) (9)

the ratio of ratios S(t) should at this point be locally invariant and uniquely dependent on
the oxygen saturation. However, as mentioned in Section 1, the effects of specular reflections
have been ignored. This is particularly important because, as has been shown in [18], the AC
component will not only be due to colour changes as a result of the in- and out-flow of blood in
tissue, but also as a result of changes in colour due to movement. In the following section, we
will discuss how we can minimise the influence of locations i where specular reflections and
movement have a large effect, thereby reducing the conditions to those in which the model’s
assumptions are valid.

2.2. Implementation

The model introduced above predicts in Equation 8 that, for areas in which the skin is uniform
in tissue composition, the ratio of ratios will be independent of the choice of region of interest
(ROI) and light intensity. This is of considerable importance as it means that any or all of a
set of candidate regions of interest may be used to derive the value of oxygen saturation at any
point in time. If any region of interest may be used, then an average of the regions of interest
may be taken instead, as previous research has shown that averaging over a large number of
physiologically relevant pixels will improve the definition of the resulting PPG signal [15].
This may be understood as the reduction of the sensor noise amplitude by a factor equal to the
square root of the number of pixels used in the averaging process. Furthermore, the resulting
metric, the ratio of ratios, is robust against changing geometries, movement and illumination
artifacts, as it is invariant to these in time. As a result of Equation 8, provided that conditions
such as the spectral distribution of the light-source and the melanin concentration of the skin do
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Fig. 1. Schematic illustration of Sophia. Steps that are the same for all ROIs i are drawn in
dashed lines. HR = Heart Rate; BR = Breathing Rate; SNR = Signal-to-Noise-Ratio.

not vary, neither temporally nor spatially, the measurements will be consistent with one another
for different imaging geometries. Hence the resulting metric is therefore robust to changes in
the position of the observed subject.

These conclusions are taken into account in Sophia (shown schematically in Fig. 1), which
is based on the heart rate maps introduced in [15] and further explored in [19]. During the
intialisation phase (Step I), the skin region of interest is identified. This may be achieved either
by applying specific prior knowledge about the scene (for example by using face-detection if
a face is known to be in the image), or by simply doing a search using a very large region of
interest for the position at which the value of the signal-to-noise ratio (SNR) function for heart
rate (SNRHR) is maximised, where the SNR function is defined as follows:

SNR = SNR{x(t)}b
a

= 10log
( ∫

V |F{x(t)}|2d f∫
(1−V )|F{x(t)}|2d f

) (10)

for an integral over frequencies f from f = a to f = b, containing a detrended and
appropriately filtered timeseries x(t), consisting of successive samples from one of the R,G,B
colour channels averaged over the ROI, its Fourier transform F{x(t)}, and a double-step
function V ( f ) defined by the convolution:

V ( f ) =
[
δ ( f − f̂ )+δ ( f −2 f̂ )

]
∗Π(± fh)) (11)

centred on the fundamental frequency of interest f̂ and its second harmonic f̂ = f̂HR for heart
rate), with δ as the dirac delta function and Π as the rect function of half-width fh.

For the purpose of initialization, x(t) is taken as the green signal from the RGB camera over
a period of 12-seconds, and the double-step function for the heart rate SNR is constructed with
fHR = 1.4 Hz and fh = 0.7 Hz so as to cover the entire span of the expected physiological heart
rate range.

Once a search area has been defined in which all the skin to be imaged has been included,
the area is divided into N contiguous n×n pixel regions of interest i (n=40) and the algorithm
is intiated (Step II). Crude estimates for the heart rate, f̂HR, and the breathing rate, f̂BR, are first
found from the analysis of 12-second windows which are slid 1 second at a time (Step III). The
heart rate estimate is found by taking the average of all the signals resulting from the per-frame
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spatial average of the green channel in each of the N regions of interest, then detrending and
high-pass filtering this average prior to finding the peak of the Fourier Transform. The breathing
rate estimate is found by taking the average of the power spectral density (PSD) of the detrended
blue signal across all N regions of interest and then searching for a peak in the expected
physiological range (between 0.1 and 0.7 Hz, corresponding to 6 to 42 breaths per minute).
While the green channel usually has a high heart rate SNR as a result of its poor absorption by
melanin but high absorption by blood, the blue channel is used to determine the breathing rate
for the opposite reason. This is done under the assumption that the three channels are equally
likely to be affected by changes in reflectance and in the imaged scene as a result of motion,
but this gives rise to a higher SNR in the blue channel for respiratory rate estimation, as it is the
channel least affected by heart rate information.

The pulsatile, cardiac-synchronous signals which are caused by colour changes due to the in-
and outflow of blood will have a relative phase shift between them that is uniquely determined
by the maximum pulse transit time within the area of skin observed. From values previously
reported in the literature [20], this phase shift is expected to be much smaller than π

2 radians,
and the signals can therefore be said to be more in phase with each other than in antiphase. The
breathing rate signals are instead caused by changes in colour due to movement, and can be
either in overall phase or in antiphase. As a result of this, a temporal average over all the signals
together would minimise the breathing rate signal.

The spatial averages across the 12-second windows are calculated for each of the RGB
channels of the N regions of interest i to compute three 1-D signals. The heart rate SNR function
is applied to each of the N red windows, selecting the frequency limits a and b to be a = 0.7
Hz and b = 2.4 Hz and with fb taken to be the quantisation limit of the Fast Fourier Transform
(FFT) applied. The choice of the use of the red channel for the calculation of the heart rate
SNR function is dictated by the fact that it is then this channel that is used (in conjunction with
the blue channel) to derive oxygen saturation and it is therefore crucial to obtain ROIs that are
relevant to this channel in particular. The breathing rate SNR function is instead applied to each
of the N blue windows, with a = 0.1 Hz and b = 0.7 Hz and the half-width of the breathing rate
rect function fb once more the quantisation limit of the FFT (Step IV).

The results of the heart rate and breathing rate SNR functions serve to create a logical
inclusion function Li that determines whether the region of interest will be used in further
calculations for that window or will be rejected (Step V). For a timeseries whose pulsatility is
due to a true skin colour change, we would expect a high value for the heart rate SNR, but a
low value for the breathing rate SNR. This is because breathing rate is mostly associated with
movement, and any region of interest that has a high breathing rate SNR will therefore have
some component (whether a physical feature or a specular reflection) that is moving and thus
does not fit the initial assumptions of the model described by equations 6 to 8.

A further binary condition Pi is imposed: the cardiac-synchronous AC component of the
green channel of the region interest has to be in phase with the green heart rate signal derived
for the whole search area, such that:

Pi =

{
1, if |φ i

g( f̂HR)−φG( f̂HR)|< π

2
0, otherwise

(12)

where φ i
g( f̂HR) is the phase of the heart rate frequency estimate for the green signal of the

region of interest i, and φG( f̂HR) is the phase of the heart rate frequency estimate for the green
signal averaged over the entire area. A phase difference of π

2 is chosen here to differentiate
between cases for which phase estimates can be said to be in phase but for the addition of
a phase shift caused by a delay introduced by the pulse transit time and cases for which the
two phase estimates are exactly in antiphase. The latter will only occur as a result of the

#242910 Received 15 Jun 2015; revised 1 Aug 2015; accepted 3 Aug 2015; published 11 Aug 2015 
(C) 2015 OSA 1 Sep 2015 | Vol. 6, No. 9 | DOI:10.1364/BOE.6.003320 | BIOMEDICAL OPTICS EXPRESS 3326 



cardiac-synchronous signal in the ROI being the result of movement induced pulsations. The
green channel is chosen as it has been shown [11] that this channel has the highest SNR for
heart rate and will thus lead to a more accurate comparison of phase estimates.

The overall logical inclusion function Li is then given by the heart rate, breathing rate, and
phase components – Li

HR, Li
BR, Li

PH respectively – such that

Li = Li
HR∩Li

BR∩Li
PH

=
(

SNRi
HR > SNRthresh

HR

)
∩
(

SNRi
BR < SNRthresh

BR

)
∩Pi (13)

with SNRthresh
HR and SNRthresh

BR determined by the initial conditions of the video recording
(these thresholds will depend on skin colour, light intensity, light spectrum and distance from
the camera). The use of the inclusion function removes from the estimation of oxygen saturation
those regions of interest for which changes in AC amplitude are caused by specular reflections,
including only those regions of interest for which the changes in normalised AC amplitude
(ratio of ratios) are caused by colour change.

In Step VI, the normalised AC amplitude is determined for each colour channel as per
Equation 7 in all M regions of interest that meet the condition Li = 1. As the method depends
on multiple regions to reduce the measurement error, a minimum number of regions M ≥ 3
is required at each iteration or the time window is rejected. The DC component is taken as
the time-average of the 12-second window for each colour channel and each region of interest
individually, and the AC component is taken to be the residual of the original timeseries after
the DC component has been subtracted. A weighted average of all the M normalised amplitudes
of the AC component for the heart rate timeseries is then taken for each of the colour channels,
in which the region of interest weightings ωi are a function of the heart rate SNR (Step VII),
such that:

ωi =
SNRi

HR
M
∑(SNRi

HR)

, {i : Li = 1} (14)

The weighting favours regions of interest that have a high heart rate signal-to-noise ratio as
these are more likely to conform to the theoretical model described by Equation 6. Note that the
averaging takes place prior to the ratio of ratios being computed, so as to minimise the effect of
noise in both the numerator and denominator of Equation 8.

Finally, a self-referential signal-averaging procedure is applied to the averaged waveforms
(Step VIII). This is done by taking the green averaged waveform, high-pass filtering it and
finding the positions of the peaks in the waveform. The green channel is again chosen for its
high SNR. All samples around the peaks ± 2

3 fHR
are then averaged together to obtain a single

representative waveform for the entire 12-second period for each channel. The amplitude of
the waveform is taken as the normalised amplitude for that channel and the ratio of ratios is
calculated as the ratio of the blue amplitude to the red amplitude (Step IX). Steps II to IX are
then repeated until the subject moves outside the search area, at which point the algorithm is
halted until there is a period of no movement and reinitialisation is possible.

2.3. Further vital signs

Although the method presented here has been devised to obtain an estimate for oxygen
saturation, the need for an accurate calculation of the heart rate is inherent in the model used
and the assumptions made, and heart rate may be estimated in conjunction with the oxygen
saturation estimate. It can be derived by applying established signal processing techniques
(detrending, band-pass filtering, Principal Component Analysis) to the waveform obtained in
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Step VII. The peak of the resulting PSD then corresponds to the HR. The interested reader is
referred to [12, 15] for more detailed discussions on the methods for heart rate estimation.

Breathing rate is also estimated as part of the algorithm described, but due to the short length
of the windows considered (12 seconds), the low frame rate, and the use of the Fast Fourier
Transform (FFT), the results are heavily quantised. Since an accurate measure of breathing rate
is not necessary for the algorithm, breathing rate estimation is outside the scope of this paper.

2.4. Dataset

The algorithm was tested using the video recordings of five volunteers who had undergone
a controlled study in a hypoxic environment. The recordings were made with a 3-CCD (JAI
AT-200CL) RGB camera placed about 1.5 m from the subject, shooting at 16 frames per second.
The skin phenotype of the volunteers was determined through the use of the Fitzpatrick scale
standard [21]. The distribution of Fitzpatrick skin types may be seen in Table 1. The study
was conducted in the University of Oxford Department of Physiology, Anatomy and Genetics,
using a purpose-built chamber within which the inspired concentrations of nitrogen, oxygen and
carbon dioxide could be carefully controlled [22]. Participants were first recorded for seven
minutes breathing air. The ambient oxygen concentration was then reduced by introducing
nitrogen into the chamber until the SpO2 settled at 95%. The process was repeated every
seven minutes to a nadir SpO2 of 80%. This process was entirely under manual control and
was performed by a critical-care physician who constantly monitored physiological variables
to permit careful titration of FiO2 to achieve the desired SpO2. Heart rate, end-tidal O2,
end-tidal CO2, respiratory rate and respiratory pattern were continuously monitored and the
live video-feed was also available to guide safe induction of hypoxaemia. That values below
80% were occasionally obtained reflects the fact that, at this degree of hypoxaemia, even very
small changes in a subject’s ventilatory pattern can result in further falls in SpO2 in spite of
FiO2 remaining unchanged. When SpO2 fell below 80%, oxygen was immediately introduced
into the chamber; if this did not bring about a rapid correction then oxygen was delivered by
nasal cannula to re-saturate the participant. Throughout the procedure, the SpO2 levels of the
participants were measured using a clinical-grade ear pulse oximeter (Datex-Ohmeda 3900 with
Tru-Trak) and their heart rate was monitored using a 3-lead ECG in order to ensure their safety.
This monitoring equipment was separate to that used to record the reference vital signs, detailed
below.

All windows were covered so as to minimise the amount of stray incident lighting from any
source other than that in the chamber itself. The interior of the chamber was lined with sheets of
Tyvek 1443R to ensure a maximal and equal reflection of all wavelengths from the source. This
created an environment of diffuse and spectrally uniform lighting. Throughout the study, the
volunteers were illuminated with two 576-LED Mosaic 30cm lighting panels (Limelite Ltd).
The lights were directed at reflecting panels (also lined with Tyvek 1443R) to ensure the light
was spread evenly accross the subject’s face.

Reference data for the study were acquired using two BlackShadow (Stowood Scientific
Instruments, Oxford, UK) devices, with a pulse oximeter probe positioned on the index
fingers of each hand, a three-lead ECG, and abdominal and thoracic elastic belts that measure
respiratory rate via inductance plethysmography. The pulse oximeter used by the BlackShadow
was a MS2040 oximeter (Masimo Inc) with an averaging time of 2-4 seconds and a reported
accuracy of ±2% in stationary adults in the SpO2 range between 70% and 100%.
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3. Results

3.1. Post-processing

In order to obtain accurate estimates for the vital sign values and prior to linear regression,
a simple but robust univariate outlier detection method [23] was applied retrospectively to
the camera heart rate timeseries and the normalised channel amplitude timeseries, to reject
anomalies. Outliers were taken to be those that had absolute values that were more than three
times the median absolute deviation (MAD) away from the median of the distribution. The
proportion of data rejected as a result of these procedures and the algorithm’s own logical
inclusion index is shown in Table 1. As two reference signals were available for heart rate and
oxygen saturation from the two pulse oximeters used (RefL and RefR), the mean of the two
(Refµ ) was employed as a comparative reference. All data presented in the Figures and Tables
will be made available at [24].

Table 1. Skin colour type (Fitzpatrick scale I through to VI), and proportion of data used per
subject. Both the algorithm (Sophia) and post-processing techniques applied to the results
reject data that are detected as noise or outliers.

Subject Fitzpatrick
Type

Total
Recording

Time (mins)

Accepted Time
(mins)

Rejected Time
(mins)

Proportion of
Total Used (%)

1 II 41.7 36.3 5.4 87.1
2 IV 44.7 41.2 3.5 92.2
3 III 44.7 30.3 14.4 67.7
4 III 42.9 42 0.9 97.9
5 III 34.1 29.1 5.0 85.4

3.2. Oxygen saturation

Two representative quantities are used to determine the efficacy of the method: the coefficient
of determination (r2) between the log ratio of ratios and the reference oxygen saturation, and
the mean absolute error (MAE) between the fitted results and the reference oxygen saturation.
A log-linear fit was found of the type:

E = β log(S)+ c (15)

where S is the ratio of ratios from Equation 8 – normalised blue amplitude divided by
normalised red amplitude. The parameters c and β were found via least squares regression
analysis, and E is the camera estimate of peripheral oxygen saturation. The use of the logarithm
arises because the normalised amplitude of the red channel will be smallest (and thus most
sensitive to noise) when the oxygen saturation is high, magnifying the noise greatly. The
application of the logarithm simply attenuates this effect by reducing the impact of variation
when the oxygen saturation is high. The results are reported in Table 2, alongside the mean
absolute error between the two reference pulse oximeters, reported for comparison, and the
mean and standard deviation of the reference oxygen saturation, giving an indication of the
spread of the oxygen saturation throughout the session. The mean error (ME) between the
reference SpO2 from the pulse oximeters is also reported to verify that there is no bias between
the two oximeters. The accuracy and biases present in the data that has been linearly regressed
onto the reference oxygen saturation are shown graphically through a Bland-Altman plot in Fig.
2. Two representative examples of the camera and reference data are shown in Fig. 3 and 4, in
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Fig. 2. Bland-Altman plot of all results for oxygen saturation. The estimated oxygen
saturations (obtained by fitting a linear model to the data) are compared with the mean
reference oxygen saturation. The red line and green lines either side of it show µ±1.96σ =
0.00±5.51.

which both the timeseries and the correlation between the reference oxygen saturation and the
derived estimate for oxygen saturation are shown for Subject 3 and Subject 4 respectively.

Table 2. Oxygen saturation results for the non-contact (Camera) estimates versus the mean
of the two reference pulse oximeters (Refµ ), reported as the gradient between the two, the
coefficient of determination, and the mean absolute error (MAE) and the mean error (ME).
The MAE and ME between the right reference pulse oximeter (RefR) and the left reference
pulse oximeter (RefL) are also reported, as is the spread of the mean reference data in the
form of mean and standard deviation (µ±σ ).

Subject Gradient
β

Coefficient
of

Regression
(r2)

Camera-Refµ

MAE (%)
RefR-RefL
MAE (%)

RefR-RefL
ME (%)

Refµ

µ±σ (%)

1 38.7 0.81 2.37 1.36 -0.58 89.4 ± 7.2
2 43.2 0.89 1.63 0.42 0.36 89.0 ± 6.7
3 40.8 0.88 1.85 1.17 -0.88 89.4 ± 7.0
4 44.8 0.85 2.06 0.73 -0.67 88.7 ± 7.2
5 29.7 0.60 2.53 0.74 -0.50 91.3 ± 5.0

In order to have a baseline against which to compare the method in an effective manner, other
ROI selection methods were taken from the literature and applied to all subjects. A comparison
was made with the few available methods that are applicable: [14], which uses a fixed region
of interest covering the face below the eyes of the volunteers; [15], which uses a fixed region
of interest placed on the cheek of the subject; and [17], which proposes segmenting the skin of
a face after face-detection using a cut-off in YCbCr colour space and using the skin mask
as the ROI. Of these methods, it should be noted that [14] was used within a two-camera
architecture that employed narrow-band filters, and both [15] and [14] appear to have used
manually selected, fixed regions of interest. These two methods were therefore applied as fixed
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Fig. 3. Oxygen saturation results for Subject 3. Top-left: results with the camera using the
method described. Bottom-left: reference oxygen saturation from the pulse oximeter. Right
Scatter plot showing the relationship between the logarithm of the ratio of ratios using the
red and blue channels of the camera and the oxygen saturation from the pulse oximeter.
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Fig. 4. Oxygen saturation results for Subject 4. Top-left: results with the camera using the
method described. Bottom-left: reference oxygen saturation from the pulse oximeter. Right
Scatter plot showing the relationship between the logarithm of the ratio of ratios using the
red and blue channels of the camera and the oxygen saturation from the pulse oximeter.
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Fig. 5. A comparison of different ROI selection methods and of the effect of the inclusion
criteria on the ROI selection in Sophia, carried out on all subjects considered. From left to
right: the method introduced by [14], using a fixed region manually set onto the lower part
of the face; the method introduced by [15], using a fixed region placed on the cheek of the
subject; the method introduced by [17], using the entirety of the skin as segmented by a
segmentation in YCbCr space; Sophia with none of the thresholds introduced in Equation
13; Sophia using only the heart rate SNR threshold; Sophia using the heart rate and the
breathing SNR rate thresholds; Sophia using all thresholds as described in this paper. The
line between the points does not indicate any continuity between reported measures: it has
been added to aid the reader.

regions of interest to the data, which was possible since it was recorded for subjects who were
asked to remain as still as possible, whereas the ROI-extraction method taken from [17] was
updated every frame as it was understood to be dynamic. Once the raw red and blue signals
were acquired by taking the average of the pixel intensities for these two colour channles in the
respective ROIs, the same signal processing steps that had been used in Sophia were applied
to the methods, and the resulting oxygen saturation estimates were compared to the reference
mean oxygen saturation in order to obtain the coefficient of determination.

These results for the different ROI selection methods are shown in Fig. 5. Plotted alongside
them are the estimates resulting from the subsequent application of the inclusion criteria – no
thresholds, HR threshold, HR and BR threshold, and all thresholds – taken from Equation 13.
These are shown to give an understanding of the effect of each criterion on the final accuracy.

The potential for the relationship between colour and oxygenation to be generalised for
different subjects viewed in near-identical experimental conditions was explored through the
use of an iterative, leave-one-out technique. For each subject, the log-linear fit was estimated
by taking the gradient β as the average of the gradients of all other subjects. The value of the
intercept c was determined in each case by relating the median value of the log ratio of ratios
over the first minute of data (in which the oxygen saturation is expected to remain constant) to
the assumed value of oxygen saturation in healthy adults (97%). The MAE and ME between
the transformed estimates and the average reference oxygen saturation are reported in Table 3,
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Fig. 6. Bland-Altman plot of all results for oxygen saturation. The estimated oxygen
saturations (obtained by fitting a linear model via the leave-one-out procedure to the data
for each subject) are compared to the mean reference oxygen saturation. The red line and
green lines either side of it show µ±1.96σ = 0.19±5.81.

and the data for all subjects is shown in Fig. 6.

Table 3. Oxygen saturation results through leave-one-out. For each subject, the mean of the
gradients of the lines of best fit to the data from all other subjects is used as the gradient
β of the linear relationship between the data and the oxygen saturation. The intercept c is
instead found by using the first minute of data from the subject. The results indicate that the
method can not only be used to track oxygen saturation changes, but effectively measure it
based on a training data across similar skin colours and under ideal conditions.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Gradient 39.6 38.5 39.1 38.1 41.9
MAE (%) 2.37 1.76 1.95 2.34 2.71
ME (%) 0.20 0.27 -0.56 0.47 0.45

Finally, the influence of the number of regions of interest on the results is shown in Fig.
7, in which the mean absolute error between the best fit and the mean reference Refµ , the
coefficient of determination, and percentage of windows rejected are each plotted against a
changing threshold for the minimum number of ROIs that need to be present for a window to
be accepted.

4. Discussion

The results presented are shown for non-contact estimates based on the log of the ratio of the
normalised AC blue signal to normalised red AC signal. Previous evidence [15], has shown
that the DC intensity of the red channel is the most affected by oxygen saturation and is
positively correlated with it. Application of this knowledge to Equation 8, leads to the red
channel appearing in the denominator so as to ensure that this relationship is reflected in the
model. The linear form of the relationship, chosen as it explains the data sufficiently without
needing to resort to further polynomial fits, also closely matches that found between the ratio
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Fig. 7. Effect of varying the minimum number of regions of interest on the results for
Subject 3. Top: mean absolute error between the reference and camera oxygen saturations
for varying the minimum number of ROIs in each window. Middle: effect of varying
the minimum number of ROIs on the coefficient of determination. Bottom: percentage of
windows rejected as a result of varying the minimum number of ROIs.

of ratios in classical pulse oximetry and the arterial oxygen saturation, which had been found
to be linearly [25] or quadratically [26] related to oxygen saturation. Nonetheless, this may
only be taken to be an approximation, in the same way as current pulse oximetry technology
uses lookup tables to account for the fact that the theoretical model underpinning it neglects the
effect of multiple scattering.

The results presented in this paper show that, with a careful, dynamic selection of the ROIs
and with a log-linear relationship fitted to the data, the error margin for non-contact estimation
when compared to measures of SpO2 with conventional pulse oximetry is comparable to the
standard manufacturing claim for pulse oximeters of 2–3% over the range of 70-100% oxygen
saturation [27]. Even more interestingly, this error margin is maintained when a set gradient
is fitted to the data and the intercept is evaluated for the first minute of data (Table 3), as
this indicates that a common relationship may be found for subjects who have similar skin
colours (Fitzpatrick Types II-IV). The purpose of the leave-one-out strategy was to demonstrate
that the method proposed is not limited to individual correlations but may also be used to
infer a general relationship between colour changes and oxygen saturation changes under very
strict conditions (quasi-identical lighting, identical camera and recording parameters, healthy
subjects with similar skin tones). Under these conditions, the method proposed could be used to
measure oxygen saturation, rather than simply tracking oxygen saturation changes. It is possible
that such a relationship could be found only due to the very large range of oxygen saturations
that are sampled in the course of the experiments – around 20% – enabling a relationship to be
found even in high noise conditions.

The analysis was carried out with respect to a pulse oximeter rather than blood-gas analysis
as would be standard practice when analysing the accuracy of standard pulse oximeters. This
of itself entails some errors as the assessment of the accuracy of the new method is linked to
the accuracy of the pulse oximeters, which have a reported accuracy of ±2% in adults during
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no motion. The fact that the difference between the two pulse oximeters (reported in Table 2)
was minimal however indicates that the reference values were at the very least consistent with
one another. Another difference in the estimation of oxygen saturation using the camera data
and pulse oximeter is the averaging time. The Masimo pulse oximeters employed a variable
averaging time of 2-4 seconds, whereas, due to the lower SNR, the camera needs a longer
averaging window (12 seconds) which is then employed in the signal averaging process. This
difference in window-length will not have a great effect during slow changes in saturation
but may hide the effect of faster changes, especially if compounded by further smoothing
techniques. Nonetheless, the visual results shown in Fig. 3 and 4 would seem to indicate that
for the protocol investigated (fast desaturations and resaturations with changes occurring in <1
minute), the window-lengths employed were sensitive to fast saturation changes and followed
the reference closely, capturing, for example, the fast desaturations just before the 20th minute
and just after the 30th minute in Fig. 4. In turn, a faster rate of frame acquisition and a higher
imaging resolution, to levels which are now easily within range of commercially available
cameras, will reduce the need for longer windows and bring the averaging time to that expected
of a pulse oximeter.

Figure 5 indicates that the ROI selection method employed in Sophia consistently matches
or outperforms other approaches that have previously been attempted. Importantly, Sophia
maximises the accuracy for all estimates, whereas the other methods tended to give more
variable values. This should not come as a surprise, as the selection of regions of interest was
not a particular concern of previous works on oxygen saturation estimation with cameras: these
mainly tended to concentrate on demonstrating that such an estimation was possible in the
first place. As a result, the majority of the methods relied on carefully chosen fixed regions
of interest [14–16], that were manually placed and poorly defined. These types of methods
work very well when subjects remain very still, a condition that was both met by their original
protocol and by our study. Indeed, this may be seen for Subjects 3 and 4, two subjects who
moved very little (as measured by simple frame differencing). However Subject 1 moved a lot
more throughout the study, and this is reflected in the low value of correlation when using fixed
regions of interest. It is also interesting to note that the ROI given by [15] actually uses a subset
of the pixels that are used in [14], and that the estimates are almost always less accurate than
those of the larger set. This again would indicate that averaging over larger regions of interest,
particularly when there is no movement and the breathing rate movement is eliminated by the
signal averaging step, leads to a reduction in noise. Subject 5 also yields very poor results
across all methods; however this is not so much due to motion as to the fact that the session was
terminated after a single desaturation-resaturation cycle, and hence a more restricted range of
SpO2 values was explored for this subject.

Although the fixed region methods provide an excellent baseline – the optimal result in cases
for which there is no movement – any effort towards their automation would have to rely on
the tracking of particular features. On the other hand, [17] explicitly used a method that is
non-static and that is furthermore not overly reliant on face detection as it also uses a skin
segmentation step. This ROI selection method can therefore be used in scenarios in which
facial-feature based methods might fail as a result of having to track features that are either hard
to identify or simply not there, such as in [16]. Unfortunately, probably due to the instability of
the colour-based masking (which identified pixels from background regions neighbouring the
face as skin), [17] actually produced the most noisy results and consistently under-performed
with respect to all other ROI-selection methods. The results obtained for Subjects 3 and 4 are
in line with the coefficient of determination reported in the original paper (r2 > 0.50); however
the method is strongly under-performing in all other subjects.

When comparing the effects of subsequent ROI-selection steps within Sophia in Fig. 5,
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the most noticeable change in the resulting correlation with the reference values occurs
immediately as a result of the application of a weighted average (as may be seen in Subjects
3-4), after which the introduction of the thresholds does not overly affect the results. Only in the
cases for which the initial weighted average gives poor results does the thresholding contribute
significantly to the final result (Subjects 1 and 5). Furthermore, in Subject 5 we see that the
introduction of the breathing rate SNR threshold decreases the correlation coefficient (from
0.52 to 0.44), and it is only with the addition of the final phase condition that the accuracy of
the estimate increases again. This phenomenon may to some extent be explained by the fact
that the addition of subsequent criteria will reduce the number of regions of interest that are
averaged, increasing the noise if the regions of interest do not have data of a high enough quality.
This explanation is to some extent validated by the curves showing the effect of changing
the minimum number of regions of interest used for the calculation of the oxygen saturation
estimate in Subject 3 (Fig. 7). These show that if results that are obtained by combining fewer
than 5 regions of interest are allowed, they have a strongly negative effect on the resulting
accuracy. This in turn means that averaging over fewer regions, however well chosen, will lead
to an increase in noise. A balance therefore needs to be found between the inclusion criteria
imposed and the quality of the signal obtained. The results indicate that this may be done by
eschewing fixed SNR thresholds and instead using a dynamic approach for the thresholds, such
as by sensitivity analysis.

A number of factors have however been controlled for in this study as described in Section 2,
the effects of which need to be explored in greater depth. The method appears to be relatively
robust to changes in the imaging geometry, something that is underlined by the fact that the
error remains low even when the β and c values are taken to be the averge values for the
other subjects – the “training” dataset– but the effect of movement has not been investigated
systematically and only considered in passing. Furthermore, three additional factors are likely
to have a further influence on the relationship between oxygen saturation and the log ratio of
ratios: the camera employed, the lighting used and the concentration of melanin in the skin. The
log-linear relationship found in Section 3 may change with these three parameters, and might
affect the gradient and/or the degree of linearity. In [28], the use of the wideband blue sensor
in the calculation of oxygen saturation is also questioned with relation to the fact that it has a
lower sensitivity than the infrared wavelengths employed in standard optical oxygen sensing.
This reinforces the need and use of dynamic algorithms for ROI selection such as Sophia that
increase the quality of the signal in order to increase the sensitivity of the blue channel for
the estimation of oxygen saturation with cameras, something that is also clearly shown by the
influence of the minimum number of ROIs on the final accuracy of the estimate in Fig. 7, as
averaging over multiple ROIs will lead to a clearer signal. In turn, this indicates that a strategy
such as that chosen in [15] or [16], in which a single region of interest is chosen (whether
manually or automatically), will fare worse than a system based on averaging over multiple
regions of interest such as that proposed in Sophia. Finally, a fourth factor not controlled for in
our studies is perfusion. The subjects’ skin perfusion is likely to have varied, partly as a result
of the oxygenation changes themselves, and partly because of temperature variations.

In addition to this, the technique proposed still suffers from the large amount of noise present
in the signal. As may be observed in Table 1, in each case a highly varying number of windows
(2.1-41.5%) is rejected by the algorithm and by the post-processing procedure, although the
variability in the reference SpO2 explored still covers the 80-100% oxygen saturation range
examined (Table 2). Conversely, this means that the technique employed is largely successful
in rejecting low-quality data caused by subject motion: even when sitting still in front of
the camera, subjects do make small movements from time to time over the course of more
than half an hour. The normalisation technique applied to each ROI (Step VI in Fig. 1) is
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effective in discounting local variations in light intensity due to shadows. All of these factors
lead to an accurate assessment of oxygen saturation changes using camera-based techniques.
Furthermore, Fig. 7 suggests that the number of regions of interest available when taking a
measurement may be used as a measure of uncertainty for each measure. These uncertainty
estimates may then be incorporated into a Kalman-filter framework to allow the optimal
calculation of multiple estimates of oxygen saturation. A number of lossy post-processing
techniques such as median filtering may further be employed to ensure a cleaner signal
and reduce the amount of noise present in the final estimate, as had been done in previous
publications [14].

Finally, it should be noted that the cameras may be imaging different vessel types to the
pulse oximeters on the fingers, as visible light penetrates less than infrared light. Therefore it is
perhaps more accurate to talk of skin-oxygen saturation (StO2) rather than the pulse oximetry
(SpO2) estimate of arterial saturation (SaO2), as the vasculature imaged is more likely to be
composed of capillaries and smaller vessels such as arterioles rather than any large arterial
vessel [29]. Although [30] has shown that StO2 and SaO2 are correlated over limited ranges,
no extensive study has been carried out on humans to date. That the cameras may be measuring
mixed arterial and venous oxygen saturation is further supported by the shapes of the Bland
Altman plots (Fig. 2 and 6), which have a characteristic bias only in the upper range of the
oxygen saturation. This may perhaps be explained by the fact that, because of the nature of the
haemoglobin oxygen-dissociation curve, while the arterial oxygen saturation will change very
little in this range for quite large variations in oxygen partial pressure, venous oxygen saturation
will vary more considerably.

5. Conclusion

A novel algorithm to determine changes in oxygen saturation in visible light, both relatively
and absolutely, for predefined lighting and RGB camera conditions has been described. The
method uses an automated ROI-selection process that may be extended to scenes not limited by
the presence of facial features. The results obtained conclusively indicate that it is possible
to use an RGB camera to determine changes in oxygen saturation and to do so with an
accuracy that is comparable to that of commercial pulse oximeters. The development of a
non-contact method of determining oxygen saturation paves the way for a global measurement
of oxygen saturation and perfusion across the body rather than being limited to the peripheries
as with pulse oximetry. It has been suggested [31], that this would allow important additional
information about the peripheral circulation to be made available to clinicians.

Further work is necessary to understand the effect of external factors on the relationship
between the channel ratios and the oxygen saturation. These factors include external factors
such as changing light conditions and camera spectral responses, as well as physiological
factors such as melanin concentration and skin. A more refined model of the light-tissue
interactions than the simplistic one considered in this paper may be helpful in these
investigations, and the incorporation of uncertainty into the measurements (that is readily
available through the number of regions of interest and the variations in power of the heart-rate
signal in each region of interest) may be used to ensure a less noisy signal. Finally, improved
camera technology (higher bit resolution and sampling frequency) will lead to improvements
in estimating oxygen saturation with a non-contact method.
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